Generation and Synthetic Applications of (3-Pyridinylchloromethyl)lithium

Saverio Florio*

Dipartimento Farmaco-Chimico, Università di Bari, Via Orabona 4, 70125 - Bari, Italy

Luigino Troisi

Dipartimento di Biologia, Università di Lecce, Via Monteroni, 73100 Lecce, Italy

Received November 27, 1995

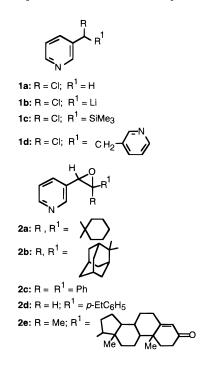
No longer only the subject of mechanistic interest, α -haloorganolithiums, also called halocarbenoids, have become increasingly important since the pioneering work by Kobrich in the 1960s.¹ Due to the improvement of preparative techniques, these organolithiums have become valuable synthetic intermediates which are reasonably stable at low temperatures and can be trapped with electrophiles.² α -Haloalkyl-,³ α -halocyclopropyl-,⁴ α -haloalkylidene-,⁵ and α -haloallyl-⁶ lithiums have been extensively studied and used in synthetic organic chemistry. The utility of the products obtained in the reactions of the above α -haloorganolithiums is that they still contain one or more halogens which make them available for further synthetic elaborations. (α-Halobenzyl)lithiums have received much less attention, probably because of their tendency to give the "homocoupling" reaction and α -elimination. Examples of the formation of α , β -diarylethyl chloride, presumably derived from the interaction of the chlorobenzyl anion with its precursor benzyl chloride, have been reported.⁷ The α -elimination of hydrogen halide from benzyl halides, in the presence of powerful bases, to give carbenes is a well-known process.⁸ These observations indicate that the tendency of (benzylhalomethyl)lithiums to give homocoupling and α elimination precludes their possible use in C-C bondforming reactions with electrophiles other than benzyl halides. The only known example of coupling is that of the trimethylsilylation of (benzylchloromethyl)lithium and (benzylbromomethyl)lithium with Me₃SiCl.⁹

(1) Kobrich, G. Angew. Chem., Int. Ed. Engl. 1972, 11, 473.

(3) (a) Villieras, J.; Rambaud, M. *Synthesis* **1980**, 644. (b) Sadhu, K. M.; Matteson, D. S. *Tetrahedron Lett.* **1986**, *27*, 795. (c) Hoffmann, R. W.; Brumm, K.; Bewersdorf, M.; Mikolaiski, W.; Kusche, A. *Chem. Ber.* **1992**, *125*, 2741. (d) Brown, H. C.; Phadke, A. S.; Bhat, N. G. *Tetrahedron Lett.* **1993**, *34*, 7845.

(4) Schmidt, A.; Kobrich, G.; Hoffmann, R. W. Chem. Ber. 1991, 124, 1253. Topolski, M.; Duraisamy, M.; Rachòn, J.; Gawronski, J.; Gawronska, K.; Goedken, V.; Walborsky, H. M. J. Org. Chem. 1993, 58, 546. Baird, M. S.; Dale, C. M.; Al Dulayymi, J. R. J. Chem. Soc. Perkin Trans. 1 1993, 1373.

(5) Grandjean, D.; Pale, P. *Tetrahedron Lett.* **1993**, *34*, 1155. Braun, M.; Opdenbusch, K. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 578. Barluenga, J.; Rodriguez, M. A.; Campos, P. J. J. Am. Chem. Soc. **1988**, *110*, 5567.


(6) Brown, H. C.; Jayaraman, S. *Tetrahedron Lett.* **1993**, *34*, 3997. Mallaiah, K.; Satyanarayana, J.; Ila, H.; Junjappa, H. *Tetrahedron Lett.* **1993**, *34*, 3145. Julia, M.; Verpeaux, J. N.; Zahneisen, T. *Bull. Soc. Chim. Fr.* **1994**, *131*, 539.

(7) Wenkert, E.; Bakuzis, P.; Dynak, J. N.; Swindell, C. S. *Synth. Commun.* **1979**, *9(1)*, 11. Brasen, W. R.; Kantor, S. W.; Skell, P. S.; Hauser, C. R. *J. Am. Chem. Soc.* **1957**, *79*, 397. Hoeg, D. F.; Lusk, D. I. *J. Organomet. Chem.* **1966**, *5*, 1.

(8) Olofson, R. A.; Dougherty, C. M. J. Am. Chem. Soc. 1973, 95, 581.

As part of a research project concerning the reactions and synthetic applications of (heteroarylhaloalkyl)lithiums,^{10–13} we have studied the reactions of a benzyliclike α -chloroorganolithium, such as (3-pyridinylchloromethyl)lithium,¹⁴ with electrophiles.

Lithiation of 3-(chloromethyl)pyridine **1a** with lithium diisopropylamide (LDA) at -78 °C gave a dark brown solution, which very likely contains the lithiated species **1b**. Attempts, however, to trap **1b** by addition of Me₃-SiCl failed. We just recovered the "homocoupling" products **1d** and **4** together with traces of the expected 3-[(trimethylsilyl)methyl]pyridine (**1c**), as verified by GC-MS. Compound **1c** did form, almost quantitatively, when **1b** was generated from **1a** in the presence of Me₃SiCl (Barbier conditions).¹⁵ Moreover, (pyridinylchloromethyl)lithium **1b** proved to be reasonably stable at -78 °C to be trapped by a number of other electrophiles, even under Grignard conditions.¹⁵ Indeed, treatment of **1b**, soon after its generation, with cyclohexanone led to the formation of epoxide **2a** in an excellent yield. Similarly,

1b reacted with adamantanone, benzophenone, and *p*-ethylbenzaldehyde affording epoxides **2b**, **2c**, and **2d**, respectively (Table 1). The reaction with *p*-ethylbenzaldehyde was stereoselective and gave the epoxide **2d** having the *E* configuration.¹⁶ The reaction of **1b** with *trans*-androsterone led to the steroidal epoxide **2e** as a

(9) Andringa, H.; Heus-Kloos, Y. A.; Brandsma, L. J. Organomet. Chem. **1987**, 336, C41-C43.

(10) Florio, S.; Troisi, L. *Tetrahedron Lett.* **1992**, *33*, 7953.

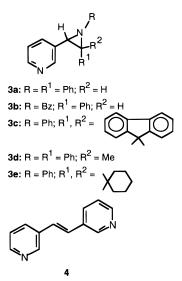
(11) Florio, S. Troisi, L. *Tetrahedron Lett.* **1994**, *35*, 3175.

(12) Florio, S.; Capriati, V.; Solimini, M. C.; Troisi, L. Tetrahedron Lett. **1994**, *35*, 8481. Florio, S.; Capriati, V.; Troisi, L. Tetrahedron Lett. **1995**, *36*, 1913.

(13) Florio, S.; Capriati, V.; Troisi, L. J. Org. Chem. **1995**, 60, 2279. (14) (3-Pyridinylchloromethyl)lithium (**1b**) actually has to be considered an α -halocarbanion, whereas (2-pyridinylchloromethyl)lithium (See ref 11) has a large character of an aza-enolate as suggested by spectroscopic data reported for similar species: Hogen-Esch, T. E.; Jenkins, W. L. J. Am. Chem. Soc. **1981**, 103, 3666.

(15) Julia, M.; Verpeaux, J. N.; Zahneisen, T. Synlett 1990, 769.

(16) We isolated just one isomer, and the small coupling constant between the epoxy ring hydrogens seems to suggest the *trans* configuration, as in similar cases. See: Florio, S., Ingrosso, G., Ronzini, L., Epifani, E. *Tetrahedron* **1991**, *47*, 3365.


Table 1. Reactions of (3-Pyrid)(1b) with Electrophiles	
	Reaction product

Electrophile	Reaction product (% yield) ^{a,b}
Me ₃ SiCl	1c (>95) ^c
cyclohexanone	2a (90)
adamantanone	2b (90)
benzophenone	2c (85)
<i>p</i> -ethylbenzaldehyde	2d (58)
trans-androsterone	2e (55)
PhN=CHPh	3a (92)
PhCH ₂ N=CHPh	3b (88)
NPh	3c (41)
PhN=C(Me)Ph	3d (30)
PhN=	3e (40)

a) Yields were not optimized and refer to isolated, purified compounds; b) Reactions carried out under Grignard conditions; c) Reaction carried out under Barbier conditions.

mixture of Z and E isomers. The synthesis of this sort of pyridinyl epoxides, which have been studied in medicinal chemistry for their cytotoxic activity,¹⁷ has been reported and it was based on the Darzens reaction of 3-pyridinyl carboxaldehyde with chloroacetone¹⁷ and chloroacetonitrile.¹⁸ Yields, however, were poor (26–37%).

Lithiated intermediate **1b** adds also to Schiff's bases to give reasonable to excellent yields of the novel aziridines **3a**–**e**. In particular, the reaction with unsymmetrical imines proceeded with very high E diastereoselectivity.¹⁹

In conclusion, in this paper we have shown that (pyridinylchloromethyl)lithium **1b**, differently from (chlo-

ro- and (bromobenzyl)lithium, which have a bias to undergo "homocoupling" and α -elimination, is sufficiently stable at low temperature to be trapped by electrophiles. The reactions of **1b** with carbonyl coumponds and Schiff's bases represent a useful tool for the preparation of functionalized pyridines.

Experimental Section

¹H-NMR spectra were recorded on 60, 90, 200, and 300 MHz spectrometers; chemical shifts are reported in parts per million (δ) from an internal TMS standard using CDCl₃ as solvent. IR spectra were recorded on a Perkin-Elmer spectrometer Model 598. GC analyses were carried out with a Hewlett-Packard MP-5890 series II gas chromatograph (dimethylsilicon capillary column, 30 m, 0.25 mm i.d.); GC-MS spectrometry analyses were performed on a gas chromatograph equipped with a mass selective detector operating at 70 eV (EI). Melting points were uncorrected. Flash chromatographies were performed with Merck 230–400 mesh silica gel. All reactions were conducted in oven-dried glassware under a nitrogen atmosphere.

Materials. THF of commercial grade was purified by distillation (twice) from sodium wires in N_2 atmosphere. Petroleum ether refers to the 40–60 °C boiling fraction. 3-(Chloromethyl)-pyridine (1a), is sold as the hydrochloride (Aldrich) from which it can be obtained upon treatment with 10% NaOH solution.

All other chemicals were of commercial grade and used without further purification or, if necessary, purified by distillation or crystallization prior to use. Microanalyses were performed on a C,H,N analyzer.

Generation of the (3-Pyridinylchloromethyl)lithium (1b) and Trapping with Electrophiles. The reaction with benzophenone is described: to diisopropylamine (2.4 mmol) in 10 mL of THF was added at 0 °C 1 mL of 2.4 M n-BuLi. The solution was cooled at -78 °C and then treated dropwise with a solution of **1a** (0.256 g, 2.0 mmol) and benzophenone (0.440 g, 2.4 mmol) in 10 mL of THF. After 1 h at -78 °C the reaction mixture was allowed to warm to rt and quenched with aqueous NH₄Cl. Extraction with ether (3 × 25 mL), drying over Na₂-SO₄, and evaporation of the solvent under reduced pressure left a residue that was column chromatographed (silica gel, petroleum ether/diethyl ether: **8**.5/1.5 as eluent) to give **1c** (85% yield).

The new compounds showed the following data:

(3-Pyridinylchloromethyl)trimethylsilane 1c: oil. ¹H-NMR (CDCl₃) δ 0.1 (s, 9H), 4.32 (s, 1H), 7.1–8.7 (m, 4H). MS m/z 199 (M⁺, 64), 156 (30), 106 (5), 73 (100). Anal. Calcd for C₉H₁₄ClNSi: H, 7.08; C, 54.12; N, 7.01. Found: H, 7.11; C, 54.20; N, 7.11.

3'-(3-Pyridinyl)cyclohexanespiro-2'-oxirane (2a): mp 88– 90 °C (EtOH). ¹H-NMR (CDCl₃) δ 1.2–1.8 (m, 10H), 3.97 (s, 1H), 7.25–8.75 (m, 4H). MS m/z 189 (M⁺, 60), 188 (31), 160 (19), 108 (100), 92 (95). IR (CHCl₃) ν 3035, 2930, 2850, 1600, 1445, 1260 cm⁻¹. Anal. Calcd for C₁₂H₁₅NO: H, 7.99; C, 76.16; N, 7.40. Found: H, 7.88; C, 76.22; N, 7.32.

3'-(3-Pyridinyl)adamantanespiro-2'-oxirane (2b): mp 130– 32 °C (EtOH) ¹H-NMR (CDCl₃) δ 1.10–2.20 (m, 14H), 4.0 (s, 1H), 7.2–8.8 (m, 4H). MS m/z 241 (M⁺, 100), 240 (19), 91 (23), 77 (12). IR (CHCl₃) ν 3035, 2920, 2850, 1595, 1450, 1420, 1090 cm-¹. Anal. Calcd for C₁₆H₁₉NO: 7.94; C, 79.63; N, 5.80. Found: H, 7.86; C, 79.73; N, 5.72.

2',2'-Diphenyl-3'-(3-pyridinyl)oxirane (2c): mp 101–103 °C (EtOH). ¹H-NMR (CDCl₃) δ 4.47 (s, 1H), 7.10–8.7 (m, 14H). MS m/z 273 (28), 272 (18), 165 (100). IR (CHCl₃) ν 3050, 3030, 2960, 1595, 1580, 1260 cm⁻¹. Anal. Calcd for C₁₉H₁₅NO: H, 5.53; C, 83.49; N, 5.12. Found: H, 5.60; C, 83.58; N, 5.06.

2'-(4-Ethylphenyl)-3'-(3-pyridinyl)oxirane (2d): mp 47–8 °C (petroleum ether). ¹H-NMR (CDCl₃) δ 1.2 (t, 3H, J = 7 Hz), 2.7 (q, 2H, J = 7 Hz), 3.82–3.97 (2d, 2H, J = 1.8 Hz), 7.1–8.7 (m, 8H). MS m/z 225 (M⁺, 29), 224 (21), 196 (100), 117 (43). Anal. Calcd for C₁₅H₁₅NO: H, 6.71; C, 79.97; N, 6.22. Found: H, 6.75; C, 79.90; N, 6.12.

⁽¹⁷⁾ Vo, D.; Agarwal, K. C.; Knaus, E. E.; Allen, T. M.; Fathi-Afshar, R. *Eur. J. Med. Chem.* **1988**, *23*, 39.

⁽¹⁸⁾ Agarwal, K. C.; Knaus, E. E. J. Heterocycl. Chem. 1987, 24, 15.

⁽¹⁹⁾ We isolated just one isomer, and the small coupling constant between the aziridinyl hydrogens seems to suggest the *E* configuration, as observed in the case of formyl aziridines: Wartski L. *Bull. Soc. Chim. Fr.* **1975**, 1663.

2'-Methyl-2'-(*trans*-17-androsterone)-3'-(3-pyridinyl)oxirane (2e): oil. ¹H-NMR (CDCl₃) δ 0.7–2.6 (m, 29H), 4.65 (s, 1H), 5.8 (s, 1H), 7.3–8.75 (m, 4H). IR (CHCl₃) ν 3020, 2970, 2875, 1660, 1450, 1230 cm⁻¹. Anal. Calcd for C₂₆H₃₃NO: H, 8.86; C, 83.15; N, 3.73. Found: H, 8.80; C, 83.30; N, 3.70.

N-Phenyl-2'-phenyl-3'-(3-pyridinyl)aziridine (3a): mp 102–104 °C (EtOH, petroleum ether). ¹H-NMR (CDCl₃) δ 3.73–3.85 (2d, 2H, J = 6.1 Hz), 6.8-8.7 (m, 14H). MS m/z 272 (M⁺,-59), 271 (100), 168 (44), 167 (51), 77 (31). IR (CHCl₃) ν 3035, 2980, 1600, 1485, 1410, 1270 cm⁻¹. Anal. Calcd for C₁₉H₁₆N₂: H, 5.92; C, 83.79; N, 10.29. Found: H, 6.00; C, 83.84; N, 10.20.

N-Benzyl-2'-phenyl-3'-(3-pyridinyl)aziridine (3b): oil. ¹H-NMR (CDCl₃) δ 3.15–3.35 (AB system, two doublets, 2H, J = 14 Hz), 4.45–4.70 (2d, 2H, J = 6.5 Hz), 7.0–8.6 (m, 14H). MS m/z 286 (M⁺, 2), 194 (100), 181 (5), 116 (12). Anal. Calcd for C₂₀H₁₈N₂: H, 6.33; C, 83.88; N, 9.78. Found: H, 6.40; C, 83.98; N, 9.70.

N-Phenyl-3'-(3-pyridinyl)fluorenespiro-2'-aziridine (3c): mp 136–138 °C. ¹H-NMR (CDCl₃) δ 4.36 (s, 1H) 6.1– 8.75 (m, 17H). MS *m/z* 346 (M⁺, 100), 345 (44), 268 (46), 267 (39), 239 (40). IR (CHCl₃) ν 3060, 3035, 2960, 1600, 1485, 1250 **N-Phenyl-2'-phenyl-2'-methyl-3'-(3-pyridinyl)aziridine (3d):** oil. ¹H-NMR (CDCl₃) δ 1.30 (s, 3H), 3.35 (s, 1H), 7.20–8.7 (m, 14H). MS m/z 286 (M⁺, 39), 285 (50), 194 (96), 180 (100). IR (CHCl₃) ν 3060, 3030, 2980, 1600, 1450, 1245 cm⁻¹. Anal. Calcd for C₂₀H₁₈N₂: H, 6.34; C, 83.88; N, 9.78. Found: H, 6.40; C, 83.92; N, 9.68.

N-Phenyl-3'-(3-pyridinyl)cyclohexanespiro-2'-aziridine (3e): oil. ¹H-NMR (CDCl₃) δ 1.3–2.0 (m, 10H), 3.33 (s, 1H), 6.9–8.9 (m, 9H). MS m/z 264 (M⁺, 26), 263 (12), 235 (15), 221 (16), 172 (100). IR (CHCl₃) ν 3060, 2960, 2850, 1600, 1450, 1250 cm⁻¹. Anal. Calcd for C₁₈H₂₀N₂: H, 7.62; C, 81.78; N, 10.60. Found: H, 7.70; C, 81.84; N, 10.45.

Acknowledgment. We thank italian Consiglio Nazionale delle Ricerche (CNR) and Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) (Rome) for financial support.

JO952084D